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Estimating tensors for matching
over multiple views

By Joan Lasenby1 and Anthony N. Lasenby2

1Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK

2Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK

In this paper we give purely geometric derivations of the constraints between point
and line correspondences in multiple views of a static field. The analysis is carried
out using geometric algebra, a system which provides a useful tool in many computer
vision applications. It is shown that with a straightforward geometric interpretation
it is simple to derive the degrees of freedom of such tensors and to understand
their structure. Given such information, minimal parametrizations of the tensors
are possible. Such parametrizations may be useful for estimation of the tensors and
subsequent matching of points.

Keywords: geometry; tensors; geometric algebra; trifocal tensor;
projective geometry; minimization

1. Introduction

Estimating the fundamental matrix, F , has become an important part of many
feature matching schemes. For example, in RANSAC schemes, F s are estimated
for a number of randomly selected groups of seven potential point matches. Each F
is then applied to all points apart from those from which it was formed. The F which
shows the best behaviour (i.e. gives a small value of Fijxix′j for the largest number of
potential matches) is taken as the estimated F and outliers are rejected on the basis
of this F . Thus it is clear that we must have a means of estimating F in the presence
of noisy data which is accurate and robust. Such estimation techniques have been
the subject of much recent research (Luong & Faugeras 1995; Hartley 1995).

More recently, the trifocal tensor, T , which relates points and lines in three views,
has been used for matching in a similar way as described above for F (Beardsley
et al . 1996). T may have many advantages over F ; it is claimed that matching over
three views is more robust and being able to use points and lines simultaneously
provides additional flexibility. It may also be the case that T has no critical surfaces
(Sashua & Maybank 1996), or that the critical surfaces prevent less of a problem
than they do for F . This issue of the critical surfaces of T is a current research area.
Once again, for good matching, we need a means of estimating T which is accurate
and robust in the presence of noise.

In the following sections we will derive the bilinear and trilinear constraints relat-
ing two and three views in purely geometric terms and from this redefine the tensors
arising from the constraints as linear functions. Using such a framework we will anal-
yse the characteristics of the linear functions and develop minimal parametrizations.
The use of such minimal parametrizations in minimization routines will be discussed.
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Figure 1. The directed area, or bivector, a ∧ b.

2. Geometric algebra: a brief outline

The algebras of Clifford (1878) and Grassmann (1877), are well known to pure mathe-
maticians, but were abandoned by physicists in favour of the vector algebra of Gibbs,
which is that used today in most areas of physics. The approach to Clifford alge-
bra we adopt here was pioneered in the 1960s by Hestenes (1966), who has worked
on developing his version of Clifford algebra, which will be referred to as geometric
algebra, into a unifying language for mathematics and physics.

Let Gn denote the geometric algebra of n-dimensions; this is a vector space in
which the elements have a property called grade (see later). As well as vector addition
and scalar multiplication we have a non-commutative product which is associative
and distributive over addition; this is the geometric or Clifford product. A further
distinguishing feature of the algebra is that any vector squares to give a scalar. The
geometric product of two vectors a and b is written ab and can be expressed as a
sum of its symmetric and antisymmetric parts which we write as

ab = a · b+ a ∧ b. (2.1)
We are therefore able to define the inner product a · b and the outer product a∧b

in terms of the more fundamental geometric product as follows:
a · b = 1

2(ab+ ba), a ∧ b = 1
2(ab− ba). (2.2)

The inner product of two vectors is the standard scalar or dot product and pro-
duces a scalar. The outer or wedge product of two vectors is a new quantity we call
a bivector. We think of a bivector as a directed area in the plane containing a and
b, formed by sweeping a along b; see figure 1.

Thus b∧a will have the opposite orientation making the wedge product anticom-
mutative. The outer product is immediately generalizable to higher dimensions; for
example, (a ∧ b) ∧ c, a trivector, is interpreted as the oriented volume formed by
sweeping the area a∧ b along vector c. The outer product of k vectors is a k-vector,
and has grade k. A general element of the geometric algebra of n-dimensions is a
multivector, which is a linear combination of objects of any grade. If a multivector
possesses only terms of a single grade it is termed homogeneous. The geometric alge-
bra provides a means of manipulating multivectors which allows us to keep track of
different grade objects simultaneously. We are already familiar with such a process
in dealing with complex numbers: there one has two different types of object (real
and imaginary), but the algebra is such that we can manipulate the complex number
in a way which gives us the correct behaviour in the real and imaginary domains. In
a space of three dimensions we can construct a trivector a ∧ b ∧ c, but no 4-vectors
exist since there is no possibility of sweeping the volume element a ∧ b ∧ c over a
fourth dimension. The highest grade element in a space is called the pseudoscalar.
The unit pseudoscalar is denoted by I or i in two and three dimensions.
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We can generalize the definitions of inner and outer products given in equa-
tion (2.2). For two homogeneous multivectors Ar and Bs (i.e. multivectors of grades
r and s respectively), we define the inner and outer products as

Ar ·Bs = 〈ArBs〉|r−s|, (2.3)

Ar ∧Bs = 〈ArBs〉r+s, (2.4)

where 〈M〉t denotes the t-grade part of the multivector M . Thus the inner product
produces an |r − s|-vector, which means it effectively reduces the grade of Bs by
r; and the outer product gives an (r + s)-vector, therefore increasing the grade of
Bs by r. This is an extension of the general principle that dotting with a vector
lowers the grade of a multivector by 1 and wedging with a vector raises the grade of
a multivector by 1. To avoid the inclusion of too many brackets, the convention we
shall use here is that the inner and outer products take precedence over the geometric
product in any expression.

Another concept which will be used elsewhere in this paper is that of the reciprocal
frame. Given a set of linearly independent vectors {ej} (where no assumption of
orthonormality is made), we can form a reciprocal frame, {ej}, which is such that

ej · ek = δjk. (2.5)

For details of the explicit construction of such a reciprocal frame in n-dimensions
see Hestenes & Sobczyk (1984). In three dimensions this is a very simple operation
and the reciprocal frame vectors for a linearly independent set of vectors {ej}, j =
1, . . . , 3, are as follows

e1 =
1
α
ie2 ∧ e3, e2 =

1
α
ie3 ∧ e1, e3 =

1
α
ie1 ∧ e2, (2.6)

where iα = e3 ∧ e2 ∧ e1. Note that, according to our defined order of precedence
for operators, the above expressions mean (1/α)i(e2 ∧ e3), etc. We can express any
vector a in terms of the frame or the reciprocal frame:

a = ajej = ake
k. (2.7)

Here and in the following sections the summation convention will be used unless
otherwise stated, i.e. repeated indices are summed over.

3. Projective space and the projective split

Points in real three-dimensional (3D) space will be represented by vectors in E3, a
3D space with a Euclidean metric. We take as our model a pinhole camera so that
any point in space is projected down onto an image plane which is at a distance f
(the focal length) from the centre of projection O. Since any point on a line through
O will be mapped to a single point in the image plane, we can see why the approach
of associating a point in E3 with a line in a 4D space, R4, might be a reasonable
thing to do. Suppose we define basis vectors: (γ1, γ2, γ3, γ4) in R4 and (σ1, σ2, σ3) in
E3 and use the geometric algebras of four and three dimensions on these spaces. We
require that vectors, bivectors and trivectors in R4 will represent points, lines and
planes in E3. Choosing γ4 as a selected direction in R4, we can then define a mapping
which associates the bivectors γiγ4, i = 1, 2, 3, in R4 with the vectors σi, i = 1, 2, 3,
in E3. This process of association is called the projective split. To ensure σ2

i = +1 we
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are forced to assume a non-Euclidean metric for the basis vectors in R4. We choose
to use γ2

4 = +1, γ2
i = −1, i = 1, 2, 3.

For a vector X = X1γ1 +X2γ2 +X3γ3 +X4γ4 in R4 the projective split is obtained
by taking the geometric product of X and γ4. This leads to the association of the
vector x in E3 with the bivector X ∧ γ4/X4 in R4 so that

x =
X1

X4
γ1γ4 +

X2

X4
γ2γ4 +

X3

X4
γ3γ4 =

X1

X4
σ1 +

X2

X4
σ2 +

X3

X4
σ3, (3.1)

which implies xi = Xi/X4, for i = 1, 2, 3. The process of representing x in a higher
dimensional space can therefore be seen to be equivalent to using a vector of homo-
geneous coordinates, X, for x.

(a) Projective geometry and algebra in projective space

We now look at the basic projective geometry operations of meet and join, and
briefly discuss the algebra of incidence in projective space. For more detail the reader
is referred to Hestenes & Ziegler (1991) and Bayro et al . (1996).

Any pseudoscalar P can be written as P = αI where α is a scalar and we introduce
the notation

PI−1 = αII−1 = α ≡ [P ]. (3.2)

This bracket is precisely the bracket of the Grassmann–Cayley algebra. We then
define the dual, A∗, of an r-vector A as

A∗ = AI−1. (3.3)

The join J = A
∧
B of an r-vector A and an s-vector B is defined by

J = A ∧B if A and B are linearly independent, (3.4)

and it can be shown that the meet of A and B can be written as

A ∨B = (A∗ ∧B∗)I = (A∗ ∧B∗)(I−1I)I = (A∗ ·B). (3.5)

The join and meet can be used to describe lines and planes and to intersect these
quantities. Consider three non-collinear points, P1, P2, P3, represented by vectors
x1, x2, x3 in E3 and by vectors X1, X2, X3 in R4. The line L12 joining points P1
and P2, and the plane Φ123 passing through points P1, P2, P3, can be expressed in
R4 by the following bivector and trivector respectively:

L12 = X1 ∧X2, Φ123 = X1 ∧X2 ∧X3. (3.6)

In E3, the intersection of lines and planes, of planes and planes, and of lines and
lines, can be dealt with entirely using the meet operation. Details and derivations
are given in Lasenby & Bayro (1998).

Any point P , represented in R4 by X, on the line through P1 and P2, will satisfy

X ∧ L12 = X ∧X1 ∧X2 = 0. (3.7)

This is therefore the equation of the line in R4. In general such an equation is
telling us that X belongs to the subspace spanned by X1 and X2. Similarly, X lies
in the plane Φ123 if

X ∧ Φ123 = X ∧X1 ∧X2 ∧X3 = 0. (3.8)
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Figure 2. The projections of a world pointX onto two image planes A and B are shown together
with the epipoles, EAB and EBA, and three points which define each plane. All vectors are in
R4.

4. The fundamental matrix

In this section we will look at how the fundamental matrix, F , can be regarded as
a linear function taking two vectors to a scalar and how this enables us to extract
the structure of F . In the following section we will then see how to apply exactly
the same techniques to the trifocal tensor relating three views. As before, we will use
lower case letters to denote vectors in E3 and upper case letters to denote vectors
in R4. Let us first define two image planes by specifying three points in each plane:
(a1,a2,a3) and (b1, b2, b3), with the R4 representations of these points beingAi,Bi,
i = 1, 2, 3. We will work mainly in projective space, therefore dealing with the R4

vectors. As shown in figure 2, a world point X projects onto points A′ and B′ in the
two image planes. In figure 2 the epipoles (the intersections of the line joining the
optical centres with the image planes) in the A and B planes are denoted by EAB
and EBA. It is clear that the points A0,B0,A

′,B′ are coplanar. The wedge of these
four vectors must therefore vanish:

A0 ∧B0 ∧A′ ∧B′ = 0. (4.1)
Now, if we let A′ = αiAi and B′ = βjBj , then equation (4.1) can be written as

αiβj{A0 ∧B0 ∧Ai ∧Bj} = 0. (4.2)

Defining Fij = {A0 ∧B0 ∧Ai ∧Bj}I−1 gives us
Fijαiβj = 0, (4.3)

which is the well-known relationship between the components of the fundamental
matrix, F , and the image coordinates. This therefore suggests that we might cast F
as a linear function mapping two vectors onto a scalar:

F (A,B) = {A0 ∧B0 ∧A ∧B}I−1, (4.4)
so that Fij = F (Ai,Bj). Now, in order to investigate the number of degrees of
freedom of F we can consider what F looks like under a change of basis. Let us use a
new basis in each image plane; instead of Ai and Bi, we have EAi and EBi, where

EA1 = EAB, EA2 = A2, EA3 = A3, (4.5)
EB1 = EBA, EB2 = B2, EB3 = B3, (4.6)
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provided EAB,A2,A3 and EBA,B2,B3 are not collinear. Now, because EA1∧A0∧
B0 = 0 since the points are collinear, and similarly EB1 ∧A0 ∧B0 = 0, we see that

F (EA1,B) = 0 ∀B, (4.7)
F (A,EB1) = 0 ∀A, (4.8)

which imply that F11 = F12 = F13 = 0 and F11 = F21 = F31 = 0. In this epipole
basis, F therefore has (9− 5) = 4 non-zero entries. Thus the total number of degrees
of freedom is 4 + (2× 2)− 1 = 7, where the 2× 2 comes from the unknown epipole
coordinates (up to a scale factor) and the −1 is because F can only be determined
up to an overall scale. Thus a possible minimal parametrization of F would be the
vector X:

X = [F22, F23, F32,Eab,Eba], (4.9)

or

X = [F22, F23, F32,eab,eba], (4.10)

where we have assumed that F33 = 1. Now, in order to use this minimal parametriza-
tion in any useful way, we will need to express the function as acting on 3D vectors.
It can be shown that

F (X1,X2) = {A0 ∧B0 ∧X1 ∧X2}I−1
4 = (a0 − b0) ∧ (x1 − a0) ∧ (x2 − b0)I−1

3 ,
(4.11)

where I3 and I4 are respectively the pseudoscalars in the 3D and 4D spaces. We see
from this that we can write F (X1,X2) as F (x1,x2) which satisfies

F (ea1, b) = 0 ∀b, (4.12)
F (a,eb1) = 0 ∀a. (4.13)

We must therefore also have F (x,x′) = 0 if x and x′ are projections of the same
world point. Given N matching point sets we might try to minimize the following
quantity:

S =
N∑
p=1

[F (xp,x′p)]
2

σp2 , (4.14)

where the σp2 are weighting factors to be determined through statistical considera-
tions. We can use the reciprocal frame vectors (equation (2.7)) to write the quantities
we are summing in terms of our observations and our minimal parameter set:

F (x,x′) = F (xjej , x′kek)

= (x · ej)(x′ · ek)Fjk. (4.15)

Here we have used the fact that ei · ej = δij to express the coefficients of the points
in the {e} basis in terms of the vectors and the reciprocal frame vectors.

It may be shown that this procedure is effectively equivalent to some methods
for determining F which have appeared in the literature in recent years (Luong
& Faugeras 1995). But, we can now apply almost exactly the same techniques to
determining T . This is discussed in the following sections.
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Figure 3. The projections of two world points, X1 and X2, in each of three image planes and
the lines joining these projected points are shown.

5. The trifocal/trilinear tensor

We can derive the constraints between points and lines in three views via the same
geometric approach that was used for two views. Figure 3 shows three image planes
A,B and C, with optical centres A0,B0,C0, and the intersections of two world
points, X1,X2, with these planes. Xi intersects the planes at points A′i,B

′
i,C

′
i,

i = 1, 2, and we denote the lines in the image planes joining the two intersection
points by LA = A′1 ∧A′2, LB = B′1 ∧B′2 and LC = C ′1 ∧ C ′2. The line joining the
world points is L12 = X1 ∧X2. Let us firstly define three planes:

Φ′A = A0 ∧A′1 ∧A′2, Φ′B = B0 ∧B′1 ∧B′2, Φ′C = C0 ∧C ′1 ∧C ′2. (5.1)

It is clear that L12 can be formed by intersecting Φ′B and Φ′C ,

L12 = Φ′B ∨ Φ′C = (B0 ∧ LB) ∨ (C0 ∧ LC). (5.2)

Letting L1 = A0 ∧ A′1 and L2 = A0 ∧ A′2, we can easily see that L1 and L2
intersect with L12 and X1 at X2 respectively. We therefore have

L1 ∧ L12 = 0 and L2 ∧ L12 = 0. (5.3)

Li ∧ L12 = 0 can then be written as

(A0 ∧A′i) ∧ {(B0 ∧ LB) ∨ (C0 ∧ LC)} = 0. (5.4)

This therefore suggests that we define a linear function T which maps a point and
two lines onto a scalar:

T (A, LB, LC) = (A0 ∧A) ∧ {(B0 ∧ LB) ∨ (C0 ∧ LC)}. (5.5)
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Now, if we define bases {Ai}, {Bi} and {Ci} for each plane, then it is possible to
define a line basis for the B and C planes as follows:

LB1 = B2 ∧B3, LB2 = B3 ∧B1, LB3 = B1 ∧B2, (5.6)

and similarly for LCi and LAi. Thus we can write

A = αiAi, LB = lBj LBj , LC = lCk LCk. (5.7)

Defining the components of a tensor as Tijk = T (Ai, LBj , LCk), then if A, LB, LC
are all derived from projections of the same two world points, equation (5.4) tells us
that we can write

Tijkαil
B
j l
C
k = 0. (5.8)

This is the constraint arrived at in Hartley (1994), where it was produced via a
consideration of camera matrices. Equation (5.8) is simply saying that two planes
intersect in a line which intersects with another line.

It is easy to see how the relationship between the line coordinates in the three
image planes comes about using this framework. We can express the line in image
plane A joining A′1 and A′2 as the intersection of the plane joining As optical centre
to the world line L12 with the image plane ΦA = A1 ∧A2 ∧A3, e.g.

LA = A′1 ∧A′2 = (A0 ∧ L12) ∨ ΦA. (5.9)

Expressing L12 as the meet of two planes Φ′B ∨ Φ′C and using the expansions of
LA, LB, LC given in equation (5.7), we can rewrite this equation as

lAi LAi = lBj l
C
k {[A0 ∧ {(B0 ∧ LBj) ∨ (C0 ∧ LCk)}] ∨ ΦA}. (5.10)

We can then expand parts of this equation using the projective geometry relations
to give

lAi LAi = lBj l
C
k {[(A0 ∧An) ∧ {(B0 ∧ LBj) ∨ (C0 ∧ LCk)}]LAn, (5.11)

which, when we equate coefficients, gives

lAi = Tijkl
B
j l
C
k (5.12)

for lines in the three images produced by the same world line.
Now, since we know the geometry of the linear function, T , we can begin to

investigate its structure as we did with F . We firstly look to characterize T in terms
of the epipoles in the problem. It is clear that in the three camera case, each image
plane has two epipoles, in plane A we will call the epipoles EAB and EAC , and
similarly for the B and C planes as illustrated in figure 4. In each plane we can now
define an ‘epipole basis’, {EAi}, {EBi} and {ECi} for i = 1, 2, 3, where

EA1 = EAB, EA2 = EAC ,

EB1 = EBA, EB2 = EBC ,

EC1 = ECA, EC2 = ECB,

 (5.13)

and EA3 is any other point in the A plane which does not lie on the line joining the
epipoles, and similarly for the other planes. From these bases it is then possible to
form a set of basis bivectors in each plane, LAi, LBi, LCi, given by

LA1 = EA2 ∧EA3, LA2 = EA3 ∧EA1, LA3 = EA1 ∧EA2, (5.14)
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Figure 4. The plane containing the epipoles of three image planes is shown. In each of the
image planes a basis is indicated (which includes the epipoles) and from this basis bivectors are
constructed.

and similarly for the B and C-plane basis bivectors. If we now define the elements
of a third rank tensor Tijk by

Tijk = (A0 ∧EAi) ∧ {(B0 ∧ LBj) ∨ (C0 ∧ LCk)}, (5.15)
it will be straightforward to count the number of degrees of freedom of T . This is
best done in several stages:

1. We note that if A = EA1, or EA2 and LB = LB1, or LB3 and LC = LC1, or
LC3 in T (A, LB, LC), then we obtain Tijk = 0. We can see this from figure 4
since in this case the quantity {(B0 ∧ LBj) ∨ (C0 ∧ LCk)} will always be the
line B0 ∧ C0 and so the resultant expression will then contain three vectors
that are collinear and will therefore be zero, i.e. A0 ∧ EA(1 or 2) ∧ B0 ∧ C0.
This implies

T111 = T113 = T131 = T133 = T211 = T213 = T231 = T233 = 0. (5.16)
Thus we know that at least eight components are zero in this basis.

2. Now consider putting A = EA1 and LB = LB2 or LB3 with any LCk. Since
it is possible to rearrange the right-hand side of equation (5.15) as

Tijk = (C0 ∧ LCk) ∧ {(A0 ∧EAi) ∨ (B0 ∧ LBj)}, (5.17)
we see that the substitutions cause the meet in the above equation to be zero
(the line and the plane meet in a line rather than a point). This therefore gives

T121 = T122 = T123 = T131 = T132 = T133 = 0 (5.18)
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giving another four zero entries.

3. We can also rearrange equation (5.15) as

Tijk = (B0 ∧ LBj) ∧ {(A0 ∧EAi) ∨ (C0 ∧ LCk)}, (5.19)

which tells us in the same way that if we put A = EA2 and LC = LC2 or LC3
with any LBk, then the Tijk so formed is zero. We can then deduce that

T212 = T222 = T232 = T213 = T223 = T233 = 0. (5.20)

A further four entries are therefore zero.

4. Putting A = EA3 and LB = LB2 or LB3 and LC = LC2 or LC3 in
T (A, LB, LC), will also give zero. This can be seen from equations (5.17),(5.19)
in which the meet will then be the point A0, thus causing the whole expression
to contain three collinear vectors which makes it zero. Thus

T322 = T323 = T332 = T333 = 0, (5.21)

providing a further four zero entries.

We therefore have (8 + 4 + 4 + 4) = 20 zero entries, giving seven non-zero entries
of T in this epipole basis. The total number of degrees of freedom is therefore given
by

7 + (6× 2)− 1 = 18. (5.22)

The (6 × 2) comes from the coordinates (up to scale) of the six unknown epipoles
and the (−1) is because T is only defined up to some overall scale factor.

Thus we have an explicit minimal parametrization of T given by the vector

XT = [T112, T221, T311, T312, T313, T321,Eab,Eac,Eba,Ebc,Eca,Ecb], (5.23)

or

XT = [T112, T221, T311, T312, T313, T321,eab,eac,eba,ebc,eca,ecb], (5.24)

where we have taken T331 = 1. The transition from four to three dimensions is
brought about in the same way as we did for F . Thus, one possible means of esti-
mating T given a number of point/line matches would be to minimize the following
expression

SS =
N∑
p=1

[T (xp, lbp, l
c
p)]

2

σp2 , (5.25)

where, again, the σps are weighting factors to be determined by statistical consid-
erations. We can proceed in precisely the same way as was outlined for F , we can
write T (. . . ) in terms of the parameters in XT via use of the reciprocal frames in
each image plane.

In order to minimize the number of iterations that are necessary it would be useful
to have reasonable estimates of the epipoles; the next section will be concerned with
extracting such estimates.
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Figure 5. Sketch showing the epioles EAB and EBA and the intersection of the line joining
B0 ∧A1 with the B-plane.

6. Extracting the epipoles from T

In this section we will look first at the problem of extracting the epipoles from a
given trifocal tensor. For some epipoles there are recent indications in the literature
as to how to extract them (Hartley 1997; Shashua 1997). Here we will show how
to obtain all six epipoles. In the case of a noiseless T the extraction method is, of
course, exact, while for noisy T s the extractions should be done in the most robust
way possible.

(a) Epipoles EBA and ECA

The first stage in finding epipoles EBA and ECA is to take the third rank tensor
T and form from it three 3× 3 matrices, T1, T2, T3 defined by

T1jk = T1jk, T2jk = T2jk, T3jk = T3jk. (6.1)

The corresponding linear functions are given by T1 = T (A1, LB, LC), T2 =
T (A2, LB, LC) and T3 = T (A3, LB, LC). Since we know that

T (A1, LB, LC) = (C0 ∧ LC) ∧ {(A0 ∧A1) ∨ (B0 ∧ LB)}, (6.2)

we can see that if LB ≡ LB1 = EBA ∧Bα1 , where Bα1 is the point at which the line
joining B0 and A1 intersects the B plane (see figure 5), then T (A1, LB1, LC) = 0
since A0, A1 and B0∧LB1 meet in a line rather than a point. LB1 is therefore a left
null eigenvector of T1. Similarly, LB2 = EBA ∧Bα2 and LB3 = EBA ∧Bα3 (where
Bα2 and Bα3 are the points at which the lines joining B0 to A2 and A3 respectively
intersect the B plane) are left null eigenvectors of T2 and T3. It is clear that we have

LBi ∨ LBj = EBA (6.3)

for any i 6= j. Thus, a way of determining the epipole EBA using all three null
vectors is to form a matrix M whose rows are the three null eigenvectors. This
matrix will be singular and its right null eigenvector will be the epipole EBA, or
more correctly, its E3 equivalent, eba. We see that this is the case since if Mx = 0,
then [u1 · x,u2 · x,u3 · x]T = 0, where ui is the left null eigenvector of Ti, and that
this is satisfied if x = eba.

Similarly, the epipoleECA or eca is found by considering the right null eigenvectors
of T1, T2, T3 and proceeding in the same way as for EBA.
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(b) Epipoles EAB and EAC

Given the epipoles EBA and ECA we can now find the next two epipoles. We first
form the following six matrices from T :

U1ik = Ti1k,

U2ik = Ti2k,

U3ik = Ti3k,

V 1ij = Tij1,

V 2ij = Tij2,

V 3ij = Tij3.

 (6.4)

Consider V 1; the equivalent linear function is V 1(A, LB). We can write this as

V 1(A, LB) = T (A, LB, LC1) = (C0 ∧ LC1) ∧ {(A0 ∧A) ∨ (B0 ∧ LB)}, (6.5)

Letting A = EAB then gives T (EAB, LB, LC1) = 0 if LB = EBA ∧Bj , for any
j = 1, 2, 3; see the figures. Thus, if we form a vector mj by contracting V 1 with
EBA ∧Bj (and we can do this because we have already found EBA), then we know
that EAB is orthogonal to this vector. Thus, one way of extracting EAB is to form
the matrix M whose three rows are the vectors mj , j = 1, 2, 3; then, as above, EAB
will be the right null eigenvector of M .
EAC is found in the same way as above but using U1 contracted with LC =

ECA ∧ Cj . Note that in these derivations we could equally well have used V 2 or
V 3 and U2 or U3; this suggests that there will be a better way of extracting these
epipoles using all the available information.

(c) Epipoles EBC and ECB

Now that we know four of the six epipoles, the final two are relatively easy to
extract. Suppose we contract T with EAB, to form a matrix S1:

S1(LB, LC) = T (EAB, LB, LC) = (B0 ∧ LB) ∧ {(A0 ∧EAB) ∨ (C0 ∧ LC)}. (6.6)

If we let LC = ECB ∧C for any C, then (A0 ∧EAB) ∨ (C0 ∧ LC) = B0, which
makes T (EAB, LB, LC) = 0. This tells us that we must be able to write the matrix
S1 in the form xTy, so that it is rank 1; therefore, the epipole ECB will correspond
to the vector x.

Similarly, the epipole EBC is found by writing the matrix W1, which is formed by
contracting T with EAC , in the form x′Ty′ and equating EBC with the vector x′.

In any real situation we will, of course, have noise and will therefore not be able to
find exact null eigenvectors in the first stage of the epipole extraction. The procedure
would then be to project T1, T2, T3 down onto the closest determinant zero matrices
and work with these to find the first two epipoles.

(d) Estimation of T

Given a sufficient number of point and/or line matches, we can estimate T linearly
via the tensor equations. Although straightforward, this will often be very inaccurate
in the presence of significant noise since there is nothing in this estimation process
which preserves the structure of T . Now that we have a means of extracting the
epipoles from T we can make an initial guess at the epipoles from the linear guess
for T and then estimate T in the epipole basis as described previously. This will
have the advantage of always producing a T with the correct structure. In such a
minimization we will be optimizing over 18 parameters; the alternative is to minimize
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a cost function with 27 degrees of freedom and impose the constraints via Lagrange
multipliers.

7. Conclusions

This paper shows how the constraints relating point and line correspondences in mul-
tiple views emerge in a geometrically intuitive manner within the geometric algebra
framework. For the case of three views, the trilinear constraints are derived using
only the intersections of planes and lines; there is no introduction of matrices, Plücker
coordinates, etc. When viewed as a linear function the structure of the trifocal tensor
in terms of the six epipoles in the construction becomes transparent.
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Discussion

M. Sabin (Numerical Geometry, Cambridge, UK ). Why not cheat? There must be a
lot of information coming from approximate camera calibration, approximate camera
positions, etc., which should give something good for the epipoles.
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J. Lasenby. Yes, in practical cases one might certainly do this. However, what I
wanted to do here was to establish an optimal estimation process to compare with
more computationally feasible methods.

A. Fitzgibbon (Department of Engineering, University of Oxford, UK ). It is con-
ceivable that the problem with the minimization is not one of having the starting
point close to the solution, but because the minimal parametrization is too tangled
up, too tight, leading to a highly non-smooth error surface. Why not loosen this
parametrization (see the Discussion following Hartley, this volume)? This would still
guarantee the generation of valid trifocal tensors by, for example, parametrizing the
epipoles by three parameters rather than two. And the minimization surface might
then smooth out.

J. Lasenby. Yes, I am willing to believe that this may be true, but would that not
give it too many degrees of freedom?

A. Fitzgibbon. It doesn’t. The numerical minimizer sort of notices that the curva-
ture is zero in that direction and doesn’t bother heading off there. What is important
is that although there are more than the minimal number of degrees of freedom, the
parametrization never produces invalid trifocal tensors.

W. Triggs (INRIA, Grenoble, France). I’ve experimented with an algorithm which
simply represents the trifocal tensor as 27 components, and does constrained opti-
mization using all the constraints on it. It is neither slow nor unstable if you imple-
ment it reasonably. Each iteration is about twice as fast as the linear method I use,
with convergence in 3–10 iterations, even from an arbitrary initialization.

J. Lasenby. This is obviously making the same point as the previous question.
Provided the correct constraints are being used, then the numerical issues of min-
imization may well mean that more degrees of freedom may improve the search
surface. How are the constraints imposed? Is it via Lagrange multipliers?

W. Triggs. It is done by sequential quadratic programming, Lagrange multiplier-
based constrained optimization. Practically, I think it is often best to take the sim-
plest possible representations and throw something numerical at them.

J. Lasenby. Given there are now 27 parameters, how quick is the minimization?

W. Triggs. If you do a reasonable job with the numerical side, it seems fast enough.
Approaches like Richard Hartley’s are also very good. But you have to be careful if
you want good numerical stability. As soon as you start to do algebraic elimination,
such as using the epipoles to eliminate tensor coordinates, the effective degree rises
very rapidly and numerical stability is lost.

P. H. S. Torr (Department of Engineering Science, University of Oxford, UK ).
I agree with Bill Triggs and Andrew Fitzgibbon that the constraints can often be
over-parametrized if a good minimization algorithm is used, e.g. the algorithm of
Powell, that throws away redundant directions as the minimization progresses. Here
one can actually put the burden of the work within the numerical algorithm; and if
you get a good algorithm, this will in fact converge very quickly.

J. Lasenby. Yes, this could tie in with what I have been finding. Perhaps an over-
parametrized surface is much flatter making a search more stable.
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W. Triggs. Moving on to another topic, I’m afraid I don’t like the use of the
Clifford algebra here. Although the scalar product made sense in the original physical
applications of the Clifford algebra, it doesn’t in the projective geometry case. If you
have calibrated cameras you may have a scalar product. In the projective case the
scalar product does not mean anything.

J. Lasenby. In fact it does mean something. The scalar product enters in two
well-defined ways; in the projective split and in the computation of the meet. In
most systems which try to avoid the use of a scalar product (e.g. differential forms),
disguised forms of the scalar product often have to be invented, e.g. the Hodge ∗
operator.

W. Triggs. You can fake a scalar product: you can say I’ve taken a basis; I sum
the squares of the coordinates; that’s my scalar product.

J. Lasenby. You may wish to do this but I have no need to fake a scalar product.
It is an intrinsic part of the framework and one which is very important in many
aspects of the analysis, as mentioned previously.

W. Triggs. The scalar product is not projectively invariant. The result is that
whenever you do a projective calculation using Clifford algebra, you have to carefully
get rid of all those extra scalar product terms you shouldn’t have put in in the first
place, to get back to the projective, Grassmann–Cayley domain.

J. Lasenby. I do not follow what Mr Triggs means here. I never have to get rid of
any unwanted parts. Is he sure he has actually implemented this correctly?

W. Triggs. I think everything you have presented here is essentially Grassmann–
Cayley algebra. I do not see any application of the Clifford part of it.

J. Lasenby. Mr Triggs has obviously misunderstood my message here. I would have
hoped to have shown that the Grassmann–Cayley algebra is simply contained in
the geometric algebra, and that the geometric algebra is a very powerful system
which can be used for much more than just projective geometry. In addition, the
Clifford approach gives concrete computational tools which are very useful in an
actual application.

W. Triggs. I come to a more general criticism of the Clifford approach. Because
you have this mixed scalar-plus-vector product you always end up with quantities
which do not have a simple transformation law under changes of coordinates. They
are formal sums of scalars, vectors, matrices, etc., each with different transformation
laws.

J. Lasenby. No, this last assertion is simply wrong. The fundamental product in
this system is the geometric product and most elements of the algebra share the same
well-defined transformation properties. I get the feeling that Mr Triggs’s criticisms
arise from feelings he has about the system from a slight knowledge of it, rather than
from any serious attempts to use it.

W. Triggs. Whenever you do some sort of calculation, the physically meaningful
objects are always invariants or covariants. In other words tensors with well-defined
transformation laws under changes of image of 3D coordinates.
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J. Lasenby. It is completely wrong to think that all meaningful quantities obey the
tensor-transformation laws. Spinors happen to be extremely important entities and
do not obey the tensor transformation law, but do obey other transformation laws.
Any of these quantities can be dealt with in the geometric algebra.

W. Triggs. Can Dr Lasenby give me an example of any quantity used in vision
which has this mixed character? That is, a quantity which has two essential parts
with different transformation laws?

J. Lasenby. A rotation is an example of something with scalar and bivector parts.
Here, the two parts combine to give a single object with the transformation properties
of a spinor.

W. Triggs. A rotation is a matrix which transforms homogeneously in a particular
way.

J. Lasenby. I’m not sure that this is a useful description. People who do any kind of
computer aided design use quaternions to rotate. Hamilton spent many years trying
to work out the generalization of the complex numbers which could rotate objects
in 3D. He came up with quaternions, and quaternions are nothing more than our
3D rotors with a scalar and bivector part. The advantage of the geometric algebra
is that it smoothly extends all this to 4D and projective space.
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